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The Kolmogorov–Petrovsky–Piskunov–Fisher (KPP-Fisher) equation is 
a nonlinear reaction-diffusion partial differential equation (PDE) with 
significant applications in population genetics, ecology, and combustion 
theory. The KPP-Fisher equation for a distribution combines a linear 
diffusion term with a nonlinear reaction term which is independent of the 
derivatives of the distribution. The standard analytical technique for 
solving the involves transforming the equation into a nonlinear ordinary 
differential equation by a change of variables and analyzing the resulting 
wave form. We will demonstrate that an alternative approach inspired by 
non-classical symmetries but only using elementary methods leads to 
exact and closed form solutions for certain choices of boundary 
conditions. We will exhibit this result with quadratic and cubic sources 
and in Cartesian and polar coordinates.

• Starting point for our 3 equations:
• 𝑢𝑢𝑡𝑡 − 𝐷𝐷∆𝑢𝑢 = 𝑘𝑘𝑘𝑘 1 − 𝑢𝑢 (𝛼𝛼)
• 𝑢𝑢𝑡𝑡 − 𝐷𝐷∆𝑢𝑢 = 𝑘𝑘𝑘𝑘 1 − 𝑢𝑢2 (𝛽𝛽)
• 𝑢𝑢𝑡𝑡 − 𝐷𝐷∆𝑢𝑢 = 𝑘𝑘𝑢𝑢2 1 − 𝑢𝑢 (𝛾𝛾)

• Assume radial symmetry in ∆𝑢𝑢 where ∆𝑢𝑢 = 𝜕𝜕
𝜕𝜕𝑟𝑟2
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:

• 𝑢𝑢𝑡𝑡 − 𝐷𝐷 𝑢𝑢𝑟𝑟𝑟𝑟 + 1
𝑟𝑟
𝑢𝑢𝑟𝑟 = 𝑘𝑘𝑘𝑘 1 − 𝑢𝑢 (𝛼𝛼)

• 𝑢𝑢𝑡𝑡 − 𝐷𝐷 𝑢𝑢𝑟𝑟𝑟𝑟 + 1
𝑟𝑟
𝑢𝑢𝑟𝑟 = 𝑘𝑘𝑘𝑘 1 − 𝑢𝑢2 (𝛽𝛽)

• 𝑢𝑢𝑡𝑡 − 𝐷𝐷 𝑢𝑢𝑟𝑟𝑟𝑟 + 1
𝑟𝑟
𝑢𝑢𝑟𝑟 = 𝑘𝑘𝑢𝑢2 1 − 𝑢𝑢 (𝛾𝛾)

• With the boundary conditions:
lim
𝑡𝑡→∞

𝑢𝑢 = 1 lim
𝑡𝑡→−∞

𝑢𝑢 = 0 lim
𝑟𝑟→∞

𝑢𝑢 = 0
• We solve using separation of variables, set each side to an arbitrary 

constant, and obtain the equations:
𝑇̇𝑇
𝑇𝑇
− 𝑘𝑘 1 − 𝑅𝑅𝑅𝑅 = 𝐶𝐶 (𝛼𝛼. 1)

𝑇̇𝑇
𝑇𝑇
− 𝑘𝑘 1 − 𝑅𝑅2𝑇𝑇2 = 𝐶𝐶 (𝛽𝛽. 1)

𝑇̇𝑇
𝑇𝑇
− 𝑘𝑘𝑘𝑘𝑘𝑘 1 − 𝑅𝑅𝑅𝑅 = 𝐶𝐶 (𝛾𝛾. 1)

• With 𝛼𝛼. 2 , 𝛽𝛽. 2 , (𝛾𝛾. 2) all equaling: 
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= 𝐶𝐶 𝛼𝛼. 2 & 𝛽𝛽. 2 & (𝛾𝛾. 2)

• Where through algebraic manipulation 𝛼𝛼. 1 and 𝛽𝛽. 1 become 
Bernoulli’s Equations:
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𝑇𝑇2

= 𝑘𝑘 + 𝐶𝐶
1
𝑇𝑇
− 𝑘𝑘𝑘𝑘 (𝛼𝛼. 1)
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= 𝑘𝑘 + 𝐶𝐶
1
𝑇𝑇2

− 𝑘𝑘𝑅𝑅2 (𝛽𝛽. 1)
• (𝛾𝛾. 1) becomes a non-linear differential equation:

𝑇̇𝑇 − 𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘𝑇𝑇2 + 𝑘𝑘𝑅𝑅2𝑇𝑇3 = 0 (𝛾𝛾. 1)
• 𝛼𝛼. 2 , 𝛽𝛽. 2 , and (𝛾𝛾. 2) become Helmholtz Equations:

𝑅𝑅′′ +
1
𝑟𝑟
𝑅𝑅′ −

𝐶𝐶
𝐷𝐷
𝑅𝑅 = 0 𝛼𝛼. 2 & 𝛽𝛽. 2 & (𝛾𝛾. 2)

DISCUSSION
• Reaction-Diffusion equations are used to model various phenomena 

in real-world situations and hypothetical scenarios. 
• Their applications are used in several fields from mathematics and 

physics to biology and geology [2]. 
• This study developed a novel method for obtaining an exact solution 

to the KPP-Fisher equation in polar coordinates using various partial 
differential equation techniques.

• The results obtained offer a new mathematical tool and further 
deepens our understanding of nonlinear diffusion phenomena.

• Further study could be done on expanding to other extensions of the 
Fisher-KPP equation using the same coordinate system.
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The purpose of this investigation is to explore the existence of closed-
form solutions using elementary PDE techniques and to showcase how 
small modifications to the Fisher-KPP equation can disrupt exact 
solutions.

• Closed-form solutions were obtained using elementary techniques.
• Sensitivity to slight variations in the Fisher-KPP could result in non-

exact solutions.
• Could be applied on other extensions of the Fisher-KPP to see if  

agreeable.
• The results will have a substantial impact on a variety of different 

fields such as the biology, conservation, and engineering.

After solving we get:

𝑈𝑈 =
𝑅𝑅(𝑘𝑘 + 𝐶𝐶)

𝐶𝐶3𝑒𝑒− 𝑘𝑘+𝐶𝐶 𝑡𝑡 + 𝑅𝑅𝑅𝑅
(𝛼𝛼)

𝑈𝑈 =
𝑅𝑅2(𝑘𝑘 + 𝐶𝐶)

𝑘𝑘𝑅𝑅2 + (𝑘𝑘 + 𝐶𝐶)𝐶𝐶1𝑒𝑒−2 𝑘𝑘+𝐶𝐶 𝑡𝑡 𝛽𝛽

𝐴𝐴 ln 𝑇𝑇 + 𝐵𝐵 ln 𝑇𝑇 − 𝑇𝑇⋆ + 𝐶𝐶 ln 𝑇𝑇 − 𝑇𝑇† = 𝑡𝑡 + 𝐶𝐶1 (𝛾𝛾. 1)

If 𝐶𝐶 ≠ 0, then R = 𝐴𝐴1𝐽𝐽0
𝐶𝐶
𝐷𝐷
𝑟𝑟 + 𝐵𝐵1𝑌𝑌0

𝐶𝐶
𝐷𝐷
𝑟𝑟 (𝛾𝛾. 2)

If 𝐶𝐶 = 0, then R = 𝐴𝐴1 ln 𝑟𝑟 + 𝐵𝐵1 (𝛾𝛾. 2)

• The Kolmogorov–Petrovsky–Piskunov–Fisher (KPP-Fisher) is a 
reaction-diffusion equation which describes the behavior of a 
beneficial evolutionary change over space and time [1].

• The KPP-Fisher equation is a nonlinear PDE which is central to 
modeling biological invasions, population dynamics, and neural 
activity [2].

• Much of the literature that looks into the Fisher-KPP equation is 
solved within the Cartesian coordinate system [1-5].

• The current research investigates the KPP-Fisher equation or 
extended KPP-Fisher equation in the cartesian coordinate system 
with alterations to the techniques used to solve for the solution [1-5].

• Integrating in different coordinate systems or employing Laplace 
transformations could yield new solution pathways, particularly for 
cases involving initial and boundary conditions that are hard to deal 
with by traditional methods.

METHODS
• 𝑢𝑢(𝑟𝑟, 𝑡𝑡) is the population density at radius 𝑟𝑟 and time 𝑡𝑡
• 𝑟𝑟 is the radial coordinate (distance from center)
• 𝑡𝑡 is time 
• 𝑢𝑢𝑡𝑡 is the time derivative of 𝑢𝑢 (describes rate of change over time)
• 𝑢𝑢𝑟𝑟 and 𝑢𝑢𝑟𝑟𝑟𝑟 is the spatial derivatives in the radial direction
• 𝐷𝐷 is the diffusion coefficient (describes rate of spatial spread)
• ∆𝑢𝑢 = 𝜕𝜕
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is the Laplacian of 𝑢𝑢 in polar (diffusion in 

radial symmetry)
• 𝑘𝑘 is the intrinsic growth rate 

Figure 1. A) Plot of t, T, and R. B) Contour plot of time in relation to T 
and R. 
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