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Abstract
Computing all the Nash equilibria of a non-cooperative bimatrix
game by hand is cumbersome, if not impossible. For this reason,
the development of computer programs to solve bimatrix games

Suppose we have the bimatrix game
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has become an integral part of the study of game theory. In this 51 (all: bil) (ﬂim bln) (P=0.py=1,0;=1,4,=0}
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nashpm and payoff. When the user inputs an m X n bimatrix with ; : : pavedVactor[1, 01), Vector([0, 11), G).
real entries into nashpm, all the mixed and pure Nash equilibria of payeff{Vecror([0, 1]), Vecror([1, 0]}, G),
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solutions into the payeff procedure, the corresponding expected
payoffs for each player are outputted. Additionally, our package
can calculate mixed and pure strategy Nash equilibria of bimatrix
games with symbolic entries.

Introduction
Research focus: non-cooperative bimatrix games
*  Two selfish/greedy players
*  Each player has a finite number of pure strategies

For any nonempty subset ¥; of § = {sy, ..., 5,,} and every nonempty subset ¥> of T = t;, ..., t,;}, one can check if any mixed strategy Nash
equilibria (p*, @*) exist such that ¥} = supp(p*) and ¥; = supp(q*). These Nash equilibria will satisfy the 10 equations from [6] where

5% € ¥; and t® € ¥, (note that s° and t° exist since ¥; and ¥; are nonempty) [6].

Maple Package/ Methodology

nashe composed of two procedures

nashpm- calculates all pure and mixed strategy Nash equilibria of a given bimatrix game

payoff- calculates the expected payoffs from a given pair of strategies

nashe = module( )
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Conclusion

*  For m X n non-cooperative bimatrix games with real number
entries, we have seen that nashpm computes all pure and
mixed strategy Nash equilibria.

*  For m x n non-cooperative bimatrix games with symbolic
entries, nashpm will sometimes compute all pure and mixed
strategy Nash equilibria.

*  Players move simultaneously Methods to check accuracy of solutions 3 .
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