Water Management Trends & The Eagle Ford

EFCREO Shale Oil & Gas Development Workshop:
Management of Water Resources, Air Resources and Oilfield Waste

April Sharr
Business Development Manager
Baker Hughes Water Management

Maximize hydrocarbons, minimize water

November 18, 2014
Water Use to Develop Energy Becoming Critical Tipping Point

Source: World Resources Institute: Global Shale Gas Development, 2014
How Much Does Water Cost?

- Fresh Water Sourcing: $0.30 – 0.80/bbl, 3%
- Fresh Water Transport: $1.00 – 4.00/bbl, 19%
- Fresh Water Storage: $1.00 – 4.00/bbl, 9%
- Fresh Water Treatment: $0.10 – 0.50/bbl, 4%
- Fresh Water Transfer: $0.60 – 1.00/bbl, 4%
- Fracture Treatment: $1.00 – 2.00/bbl, 7%
- Flow back / Produced Water Storage: $2.00 – 6.00/bbl, 25%
- Flow back / Produced Water Transport: $1.00 – 10.00/bbl, 29%

$400K - $1,700K PER WELL

$7.46 - $9.23 PER BBL OF OIL PRODUCED
Oilfield Water is Complex

Key Contaminants

- TSS
- Oil
- Heavy Metals
- Hardness
- Sulfides
- Boron

Interferes with cross link performance

- Sours wells, corrosion, reduces production
- Interferes with breakers
- Dangerous to personnel
- Inhibits proper hydration of polymers
- Causes pre-mature cross linking

Damages formation, reduces permeability

Sours wells, corrosion, reduces production

Interferes with cross link performance

Dangerous to personnel

Inhibits proper hydration of polymers

Causes pre-mature cross linking
There is no “silver bullet” for water treatment solutions
Today's Water Management Focus Areas

Decrease Costs
- Simple, low-cost, reliable, serviceable technologies
- High volume treatment
- Integrated approach for optimized operations

Increase Reliability
- Consistent, reliable water sources
- Water has to travel with you
- Robust, proven technology

Innovate
- Fracture fluid chemistry for high TDS waters
- Real time measuring and monitoring
- Data collection and management software
- Turn produced water waste into an asset

Safety & Reservoir Optimization
Water Reuse/Recycling is Expected to Grow

2014F Produced & Flowback Water (25.5 Billion barrels)

- **Re-Injection**: 58%
- **E&P Saltwater Disposal**: 24%
- **Third-Party Disposal**: 17%
- **Recycle/Reuse**: 2%

Growth in Water Recycled and Treatment Market

- **Reuse/Recycle Volume**: CAGR 35%
- **Water Treatment Spend**: CAGR 26%

Source: PacWest
Water Services Spend Will Move from Logistics to Treatment

Where the market is concentrated today

<table>
<thead>
<tr>
<th>% of Spend</th>
<th>Anadarko</th>
<th>Bakken</th>
<th>DJ Basin</th>
<th>Eagle Ford</th>
<th>Marcellus</th>
<th>Permian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
<td>11%</td>
<td>3%</td>
<td>7%</td>
</tr>
<tr>
<td>Pre-Treatment</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
<td>12%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Flowback Services</td>
<td>8%</td>
<td>7%</td>
<td>4%</td>
<td>13%</td>
<td>6%</td>
<td>9%</td>
</tr>
<tr>
<td>Treatment</td>
<td>3%</td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
<td>11%</td>
<td>5%</td>
</tr>
<tr>
<td>Disposal</td>
<td>12%</td>
<td>6%</td>
<td>2%</td>
<td>14%</td>
<td>1%</td>
<td>10%</td>
</tr>
<tr>
<td>Hauling</td>
<td>56%</td>
<td>20%</td>
<td>18%</td>
<td>64%</td>
<td>27%</td>
<td>61%</td>
</tr>
<tr>
<td>Transfer</td>
<td>5%</td>
<td>7%</td>
<td>3%</td>
<td>10%</td>
<td>3%</td>
<td>8%</td>
</tr>
<tr>
<td>Storage</td>
<td>16%</td>
<td>13%</td>
<td>7%</td>
<td>25%</td>
<td>9%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Where the market is growing tomorrow

<table>
<thead>
<tr>
<th>'14 - '16 CAGR</th>
<th>Anadarko</th>
<th>Bakken</th>
<th>DJ Basin</th>
<th>Eagle Ford</th>
<th>Marcellus</th>
<th>Permian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing</td>
<td>7%</td>
<td>9%</td>
<td>19%</td>
<td>8%</td>
<td>9%</td>
<td>18%</td>
</tr>
<tr>
<td>Pre-Treatment</td>
<td>14%</td>
<td>10%</td>
<td>21%</td>
<td>10%</td>
<td>14%</td>
<td>19%</td>
</tr>
<tr>
<td>Flowback Services</td>
<td>11%</td>
<td>8%</td>
<td>21%</td>
<td>10%</td>
<td>15%</td>
<td>19%</td>
</tr>
<tr>
<td>Treatment</td>
<td>39%</td>
<td>33%</td>
<td>40%</td>
<td>27%</td>
<td>12%</td>
<td>49%</td>
</tr>
<tr>
<td>Disposal</td>
<td>0%</td>
<td>-3%</td>
<td>11%</td>
<td>5%</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Hauling</td>
<td>2%</td>
<td>3%</td>
<td>12%</td>
<td>4%</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>Transfer</td>
<td>8%</td>
<td>9%</td>
<td>17%</td>
<td>6%</td>
<td>11%</td>
<td>12%</td>
</tr>
<tr>
<td>Storage</td>
<td>11%</td>
<td>8%</td>
<td>23%</td>
<td>9%</td>
<td>15%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Source: PacWest
Eagle Ford: Highest Water Use, 3rd Largest Water Production

Fracture Water Use by Basin

- Eagle Ford: 9.9% CAGR, 19.6%
- Permian: 14.0%
- Marcellus: 12.5%
- Anadarko*: 10.5%
- Bakken: 21.0%
- DJ Basin: 11.0%

Flowback & Produced Water by Basin

- Permian: 5.4% CAGR
- Anadarko*: 2.2%
- Eagle Ford: 23.6%
- Bakken: 16.0%
- DJ Basin: 17.1%
- Marcellus: 9.4%

Source: PacWest
Note: “Anadarko Basin” includes Anadarko Woodford, SCOOP, STACK, Cleveland; Tonkawa, Granite Wash, Cana Woodford and Mississippian
Eagle Ford: Disposal is King, Water Treatment Growing

Eagle Ford Water Volumes & End Use

Water Treatment as a % of Volume by Play

Source: PacWest
Note: “Anadarko Basin” includes Anadarko Woodford, SCOOP, STACK, Cleveland; Tonkawa, Granite Wash, Cana Woodford and Mississippian
High Volumes of Produced Water Far from Disposal Wells

Source: Digital H2O
Challenges in Disposal

- Managed by EPA under Safe Water Drinking Act

- Current issues
 - Reported Earthquakes
 - Typically less than 2.9, but some >5.0 in Barnett and Arkansas
 - Ban on disposal wells in western Arkansas
 - Transportation
 - $40k lane/mile for repairs
 (Denton County, TX)
 - Accidents
 - Eagle Ford shale – La Salle County >400% increase since 2008
 - Eagle Ford shale – McMullen County >1000% increase
Texas: Model for Water Management?

- Over 100 technical and complex oil and gas regulations, active inspection program
- P&A abandoned wells to prevent groundwater contamination (2011)
 - Oil & Gas Regulation and Cleanup Fund (Senate Bill 1, 82nd Legislature)
- Improved transparency and communication with industry and communities (2011)
- Requires mandatory reporting of chemicals used in frac fluid (2012)
 - Hydraulic Fracturing Disclosure (Statewide Rule 29, Texas Administrative Code, Title 16, Part 1, §3.29)
- Established stringent well-integrity, well-construction rules (2013)
 - Casing, Cementing, Drilling, Well Control, and Completion Requirements (Statewide Rule 13, Texas Administrative Code, Title 16, Part 1, §3.13)
- Encouraged water recycling and conservation in the oilfield (2013)
 - Water Protection (Statewide Rule 8, Texas Administrative Code, Title 16, Part 1, §3.8), Texas HB 2767 (83rd Legislature), Texas Water Recycling Association
- Amends disposal well rules to address operations in areas of historic or future seismicity (2014)
 - Disposal Wells (Statewide Rule 9 & 46, Texas Administrative Code, Title 16, Part 1, §3.9 and §3.46)
- Coordinate among energy producing states to share best practices, challenges
 - Membership in Interstate Oil and Gas Compact Commission (IOGCC), “States First” initiative, State Oil & Gas Regulatory Exchange (SOGRE), State Review of Oil & Gas Environmental Regulations (STRAWER), Independent Petroleum Association of America (IPAA)

Source: TRRC; Sustainable Water Management in the Texas Oil & Gas Industry, Atlantic Council, 2014
Water Management in an $80/bbl Oil Market

Oil Economics – Price Required for a 10% ATROR*

Source: TudorPickering Holt & Co, Company Filings and Presentations, RigData
Note: Price Required for 10% ATROR – economics assumes $3.75/mcf NYMEX
CMT Refers to the Cleveland, Tonkawa, Marmaton

TPHe ~ 150-160 hz rigs at risk
TPHe ~ 30 vt rigs at risk
Key Takeaways

- Water scarcity is leading to *increased scrutiny and regulation*
- Water costs include *direct costs, indirect costs, and financial risks*
- There is *no silver bullet* for water treatment
- Today *water* is viewed as a commodity, what will be its *true value* tomorrow?
- The goal is to *decrease costs, increase reliability, continue innovation*
- Water *recycling is* predicted to *grow* rapidly
- Declining oil prices will *shift focus to subsurface*
New State Rules

 - Chapter 4 reorganized to cover solid and fluid recycling separately
 - Rule 3.8 clarifies that an operator does not need permits to recycle fluids on their own leases

- New California Statute SB4 (2013)
 - Applies to all well stimulation, not just HF
 - Includes full HF fluid disclosure requirements

- Proposed Rules in Wyoming (2014)
 - Would require baseline water testing before drilling starts
 - Challenges from industry on nitrate testing (agricultural sources)
 - Environmental groups want broader tests and to include methane